Adaptive pre-OCR cleanup of grayscale document images
نویسندگان
چکیده
This paper describes new capabilities of ImageRefiner, an automatic image enhancement system based on machine learning (ML). ImageRefiner was initially designed as a pre-OCR cleanup filter for bitonal (black-and-white) document images. Using a single neural network, ImageRefiner learned which image enhancement transformations (filters) were best suited for a given document image and a given OCR engine, based on various image measurements (characteristics). The new release improves ImageRefiner in three major ways. First, to process grayscale document images, we have included three grayscale filters based on smart thresholding and noise filtering, as well as five image characteristics that are all byproducts of various thresholding techniques. Second, we have implemented additional ML algorithms, including a neural network ensemble and several “all-pairs” classifiers. Third, we have introduced a measure that evaluates overall performance of the system in terms of cumulative improvement of OCR accuracy. Our experiments indicate that OCR accuracy on enhanced grayscale images is higher than that of both the original grayscale images and the corresponding bitonal images obtained by scanning the same documents. We have noticed that the system’s performance may suffer when document characteristics are correlated.
منابع مشابه
Foreground-Background Regions Guided Binarization of Camera-Captured Document Images
Binarization is an important preprocessing step in several document image processing tasks. Nowadays handheld camera devices are in widespread use, that allow fast and flexible document image capturing. But, they may produce degraded grayscale image, especially due to bad shading or non-uniform illumination. State-of-the-art binarization techniques, which are designed for scanned images, do not...
متن کاملOCR accuracy improvement on document images through a novel pre-processing approach
Digital camera and mobile document image acquisition are new trends arising in the world of Optical Character Recognition and text detection. In some cases, such process integrates many distortions and produces poorly scanned text or text-photo images and natural images, leading to an unreliable OCR digitization. In this paper, we present a novel nonparametric and unsupervised method to compens...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کاملDocument Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)
Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...
متن کاملCombining multiple thresholding binarization values to improve OCR output
For noisy, historical documents, a high optical character recognition (OCR) word error rate (WER) can render the OCR text unusable. Since image binarization is often the method used to identify foreground pixels, a significant body of research has sought to improve image-wide binarization directly. Instead of relying on any one imperfect binarization technique, our method incorporates informati...
متن کامل